Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366040

RESUMO

Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.


Assuntos
Fontes Hidrotermais , Animais , Biomassa , Fontes Hidrotermais/microbiologia , Comportamento Predatório , Filogenia , Bactérias/genética
2.
FEMS Microbiol Ecol ; 100(2)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38200713

RESUMO

The discharge of hydrothermal vents on the seafloor provides energy sources for dynamic and productive ecosystems, which are supported by chemosynthetic microbial populations. These populations use the energy gained by oxidizing the reduced chemicals contained within the vent fluids to fix carbon and support multiple trophic levels. Hydrothermal discharge is ephemeral and chemical composition of such fluids varies over space and time, which can result in geographically distinct microbial communities. To investigate the foundational members of the community, microbial growth chambers were placed within the hydrothermal discharge at Axial Seamount (Juan de Fuca Ridge), Magic Mountain Seamount (Explorer Ridge), and Kama'ehuakanaloa Seamount (Hawai'i hotspot). Campylobacteria were identified within the nascent communities, but different amplicon sequence variants were present at Axial and Kama'ehuakanaloa Seamounts, indicating that geography in addition to the composition of the vent effluent influences microbial community development. Across these vent locations, dissolved iron concentration was the strongest driver of community structure. These results provide insights into nascent microbial community structure and shed light on the development of diverse lithotrophic communities at hydrothermal vents.


Assuntos
Fontes Hidrotermais , Microbiota , Água do Mar/microbiologia , Biodiversidade , Fontes Hidrotermais/microbiologia , Processos Autotróficos , Filogenia
3.
Antonie Van Leeuwenhoek ; 117(1): 24, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217723

RESUMO

A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).


Assuntos
Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias Anaeróbias/genética , Firmicutes , Clostridium/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
4.
Nat Microbiol ; 9(3): 657-668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287146

RESUMO

Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin-Benson-Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.


Assuntos
Fontes Hidrotermais , Microbiota , Fontes Hidrotermais/microbiologia , Filogenia , Carbono/metabolismo , Oceanos e Mares
5.
Appl Environ Microbiol ; 90(2): e0204123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193671

RESUMO

Zetaproteobacteria have been reported in different marine and terrestrial environments all over the globe. They play an essential role in marine iron-rich microbial mats, as one of their autotrophic primary producers, oxidizing Fe(II) and producing Fe-oxyhydroxides with different morphologies. Here, we study and compare the Zetaproteobacterial communities of iron-rich microbial mats from six different sites of the Lucky Strike Hydrothermal Field through the use of the Zetaproteobacterial operational taxonomic unit (ZetaOTU) classification. We report for the first time the Zetaproteobacterial core microbiome of these iron-rich microbial mats, which is composed of four ZetaOTUs that are cosmopolitan and essential for the development of the mats. The study of the presence and abundance of different ZetaOTUs among sites reveals two clusters, which are related to the lithology and permeability of the substratum on which they develop. The Zetaproteobacterial communities of cluster 1 are characteristic of poorly permeable substrata, with little evidence of diffuse venting, while those of cluster 2 develop on hydrothermal slabs or deposits that allow the percolation and outflow of diffuse hydrothermal fluids. In addition, two NewZetaOTUs 1 and 2 were identified, which could be characteristic of anthropic iron and unsedimented basalt, respectively. We also report significant correlations between the abundance of certain ZetaOTUs and that of iron oxide morphologies, indicating that their formation could be taxonomically and/or environmentally driven. We identified a new morphology of Fe(III)-oxyhydroxides that we named "corals." Overall, our work contributes to the knowledge of the biogeography of this bacterial class by providing additional data from the Atlantic Ocean, a lesser-studied ocean in terms of Zetaproteobacterial diversity.IMPORTANCEUp until now, Zetaproteobacterial diversity studies have revealed possible links between Zetaproteobacteria taxa, habitats, and niches. Here, we report for the first time the Zetaproteobacterial core microbiome of iron-rich mats from the Lucky Strike Hydrothermal Field (LSHF), as well as two new Zetaproteobacterial operational taxonomic units (NewZetaOTUs) that could be substratum specific. We highlight that the substratum on which iron-rich microbial mats develop, especially because of its permeability to diffuse hydrothermal venting, has an influence on their Zetaproteobacterial communities. Moreover, our work adds to the knowledge of the biogeography of this bacterial class by providing additional data from the hydrothermal vent sites along the Mid-Atlantic Ridge. In addition to the already described iron oxide morphologies, we identify in our iron-rich mats a new morphology that we named corals. Finally, we argue for significant correlations between the relative abundance of certain ZetaOTUs and that of iron oxide morphologies, contributing to the understanding of the drivers of iron oxide production in iron-oxidizing bacteria.


Assuntos
Fontes Hidrotermais , Microbiota , Compostos Férricos , Ferro/análise , Açores , Bactérias/genética , Proteobactérias , Fontes Hidrotermais/microbiologia
6.
Microbiome ; 11(1): 270, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049915

RESUMO

BACKGROUND: Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS: We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS: Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Ecossistema , Temperatura , Prótons , Carbono/metabolismo , DNA , Fontes Hidrotermais/microbiologia , Filogenia
7.
Microbes Environ ; 38(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38104970

RESUMO

Strictly hydrogen- and sulfur-oxidizing chemolithoautotrophic bacteria, particularly members of the phyla Campylobacterota and Aquificota, have a cosmopolitan distribution in deep-sea hydrothermal fields. The successful cultivation of these microorganisms in liquid media has provided insights into their physiological, evolutionary, and ecological characteristics. Notably, recent population genetic studies on Sulfurimonas (Campylobacterota) and Persephonella (Aquificota) revealed geographic separation in their populations. Advances in this field of research are largely dependent on the availability of pure cultures, which demand labor-intensive liquid cultivation procedures, such as dilution-to-extinction, given the longstanding assumption that many strictly or facultatively anaerobic chemolithoautotrophs cannot easily form colonies on solid media. We herein describe a simple and cost-effective approach for cultivating these chemolithoautotrophs on solid media. The results obtained suggest that not only the choice of gelling agent, but also the gas phase composition significantly affect the colony-forming ratio of diverse laboratory strains. The use of gellan gum as a gelling agent combined with high concentrations of H2 and CO2 in a pouch bag promoted the formation of colonies. This contrasted with the absence of colony formation on an agar-solidified medium, in which thiosulfate served as an electron donor, nitrate as an electron acceptor, and bicarbonate as a carbon source, placed in anaerobic jars under an N2 atmosphere. Our method efficiently isolated chemolithoautotrophs from a deep-sea vent sample, underscoring its potential value in research requiring pure cultures of hydrogen- and sulfur-oxidizing chemolithoautotrophs.


Assuntos
Fontes Hidrotermais , Água do Mar , Água do Mar/microbiologia , Hidrogênio , Bactérias/genética , Meios de Cultura , Oxirredução , Enxofre , Filogenia , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética
8.
mSystems ; 8(6): e0054323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37921472

RESUMO

IMPORTANCE: Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.


Assuntos
Fontes Hidrotermais , Ferro , Água do Mar/microbiologia , Hidrogênio , Fontes Hidrotermais/microbiologia , Proteobactérias/genética , Oxirredução , Compostos Férricos
9.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921840

RESUMO

A novel anaerobic heterotrophic bacterium, designated strain SWIR-1T, was isolated from a deep-sea hydrothermal vent field sample collected from the Southwest Indian Ridge at a depth of 2700 m. Phylogenetic analysis indicated that strain SWIR-1T belongs to the genus Tepidibacter, and the most closely related species are Tepidibacter mesophilus B1T (99.1 % 16S rRNA gene sequence similarity), Tepidibacter formicigenes DV1184T (94.6 %) and Tepidibacter thalassicus SC562T (93.9 %). Strain SWIR-1T shares 77.3-87.2 % average nucleotide identity and 21.5-35.7 % digital DNA-DNA hybridization values with the three type strains of Tepidibacter species. Cells of strain SWIR-1T were Gram-stain-positive, motile, short straight rods. Endospores were observed in stationary-phase cells when grown on Thermococcales rich medium. Strain SWIR-1T grew at 15-45 °C (optimum, 30°C), at pH 5.5-8.0 (optimum, pH 7.0) and with 1.0-6.0 % (w/v) NaCl (optimum, 2.0 %). Substrates utilized by strain SWIR-1T included complex proteinaceous, chitin, starch, lactose, maltose, fructose, galactose, glucose, rhamnose, arabinose, ribose, alanine, glycine and glycerol. The major fermentation products from glucose were acetate, lactate, H2 and CO2. Elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and FeCl3 are not used as terminal electron acceptors. The main cellular fatty acids consisted of iso-C15 : 0 (28.4 %), C15 : 1 iso F (15.4 %) and C16 : 0 (9.8 %). The major polar lipids were phospholipids and glycolipids. No respiratory quinones were detected. Genomic comparison revealed a distinctive blended gene cluster comprising hyb-tat-hyp genes, which play a crucial role in the synthesis, maturation, activation and export of NiFe-hydrogenase. Based on the phylogenetic analysis, genomic, physiologic and chemotaxonomic characteristics, strain SWIR-1T is considered to represent a novel species within the genus Tepidibacter, for which the name Tepidibacter hydrothermalis sp. nov. is proposed. The type strain is strain SWIR-1T (=DSM 113848T=MCCC 1K07078T).


Assuntos
Ácidos Graxos , Fontes Hidrotermais , Ácidos Graxos/química , Filogenia , Anaerobiose , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias Anaeróbias , Glucose
10.
Chem Biodivers ; 20(12): e202301345, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985414

RESUMO

Marine actinomycetes are known for their production of remarkable organic molecules, particularly those featuring polyoxygenated long-chain backbones. Determining the absolute configurations of these compounds remains a challenging task even today. In this study, we successfully established the planar structures and absolute configurations of two highly flexible amide alkaloids from Streptomyces sp. WU20: kueishanamides A (1) and B (2). These compounds possess a C13 linear backbone and each contains five stereogenic carbon centers. Our approach involved a combination of spectroscopic and computational methods, including J-based configurational analysis and VCD calculations, ensuring the unambiguous determination of their configurations. Kueishanamide A (1) and kueishanamide B (2) showed moderate antifungal activity against pathogenic fungus Crytococcus neoformans, with MIC values of 25 µg/mL each.


Assuntos
Fontes Hidrotermais , Streptomyces , Antibacterianos/química , Streptomyces/química , Fontes Hidrotermais/microbiologia , Antifúngicos/farmacologia , Antifúngicos/química , Fungos , Estrutura Molecular
11.
Environ Microbiol Rep ; 15(6): 614-630, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752716

RESUMO

Rimicaris exoculata shrimps from hydrothermal vent ecosystems are known to host dense epibiotic communities inside their enlarged heads and digestive systems. Conversely, other shrimps from the family, described as opportunistic feeders have received less attention. We examined the nutrition and bacterial communities colonising 'head' chambers and digestive systems of three other alvinocaridids-Rimicaris variabilis, Nautilocaris saintlaurentae and Manuscaris sp.-using a combination of electron microscopy, stable isotopes and sequencing approaches. Our observations inside 'head' cavities and on mouthparts showed only a really low coverage of bacterial epibionts. In addition, no clear correlation between isotopic ratios and relative abundance of epibionts on mouthparts could be established among shrimp individuals. Altogether, these results suggest that none of these alvinocaridids rely on chemosynthetic epibionts as their main source of nutrition. Our analyses also revealed a substantial presence of several Firmicutes and Deferribacterota lineages within the foreguts and midguts of these shrimps, which closest known lineages were systematically digestive symbionts associated with alvinocaridids, and more broadly for Firmicutes from digestive systems of other crustaceans from marine and terrestrial ecosystems. Overall, our study opens new perspectives not only about chemosynthetic symbioses of vent shrimps but more largely about digestive microbiomes with potential ancient and evolutionarily conserved bacterial partnerships among crustaceans.


Assuntos
Decápodes , Microbioma Gastrointestinal , Fontes Hidrotermais , Microbiota , Humanos , Animais , Filogenia , Decápodes/microbiologia , Dieta , Fontes Hidrotermais/microbiologia
12.
mSystems ; 8(4): e0028423, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37493648

RESUMO

The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum, which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.


Assuntos
Gastrópodes , Fontes Hidrotermais , Mytilidae , Animais , Fontes Hidrotermais/microbiologia , Mytilidae/genética , Bactérias/genética , Ecossistema , Geografia , Gastrópodes/microbiologia
13.
Nat Commun ; 14(1): 4354, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468486

RESUMO

It has been proposed that early bacteria, or even the last universal common ancestor of all cells, were thermophilic. However, research on the origin and evolution of thermophily is hampered by the difficulties associated with the isolation of deep-branching thermophilic microorganisms in pure culture. Here, we isolate a deep-branching thermophilic bacterium from a deep-sea hydrothermal vent, using a two-step cultivation strategy ("Subtraction-Suboptimal", StS) designed to isolate rare organisms. The bacterium, which we name Zhurongbacter thermophilus 3DAC, is a sulfur-reducing heterotroph that is phylogenetically related to Coprothermobacterota and other thermophilic bacterial groups, forming a clade that seems to represent a major, early-diverging bacterial lineage. The ancestor of this clade might be a thermophilic, strictly anaerobic, motile, hydrogen-dependent, and mixotrophic bacterium. Thus, our study provides insights into the early evolution of thermophilic bacteria.


Assuntos
Fontes Hidrotermais , Filogenia , RNA Ribossômico 16S , DNA Bacteriano/química , Fontes Hidrotermais/microbiologia , Água do Mar/microbiologia , Análise de Sequência de DNA , Bactérias/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-37477965

RESUMO

A polyphasic taxonomic study was carried out on a Gram-stain-negative and rod-shaped strain, ER-Te-42B-LightT, isolated from the tissue of a tube worm, Riftia pachyptila, collected near a deep-sea hydrothermal vent of the Juan de Fuca Ridge in the Pacific Ocean. This bacterium was capable of performing anaerobic respiration using tellurite, tellurate, selenite and orthovanadate as terminal electron acceptors. While facultatively anaerobic, it could aerobically resist tellurite, selenite and orthovanadate up to 2000, 7000 and 10000 µg ml-1, respectively, reducing each oxide to elemental forms. Nearly complete 16S rRNA gene sequence similarity related the strain to Shewanella, with 98.8 and 98.7 % similarity to Shewanella basaltis and Shewanella algicola, respectively. The dominant fatty acids were C16 : 0 and C16 : 1. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol and MK-7 was the predominant quinone. DNA G+C content was 42.5 mol%. Computation of average nucleotide identity and digital DNA-DNA hybridization values with the closest phylogenetic neighbours of ER-Te-42B-LightT revealed genetic divergence at the species level, which was further substantiated by differences in several physiological characteristics. Based on the obtained results, this bacterium was assigned to the genus Shewanella as a new species with the name Shewanella metallivivens sp. nov., type strain ER-Te-42B-LightT (=VKM B-3580T=DSM 113370T).


Assuntos
Fontes Hidrotermais , Metaloides , Shewanella , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Fontes Hidrotermais/microbiologia , Anaerobiose , Vanadatos , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Ácido Selenioso
15.
Mar Genomics ; 71: 101058, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478643

RESUMO

One sulfur-oxidizing bacterium Thioclava sp. M1-LQ-LJL-11 was isolated from the gill of Chrysomallon squamiferum collected from 2700 m deep hydrothermal named Longqi on the southwest Indian Ocean ridge. In order to understand its survival mechanism in hydrothermal extreme environment and symbiotic relationship with its host, the complete genome of strain M1-LQ-LJL-11 was sequenced and analyzed. A total of 6117 Mb of valid data was obtained, including 4096 coding genes, 61 non coding genes, including 9 rRNAs (among them, there are 3 in 23S rRNA, 3 in 5S rRNA, and 3 in 16S rRNA.), 52 tRNAs and 35 genomic islands. Strain M1-LQ-LJL-11 contains one chromosome and two plasmids. In the genome annotation information of the strain, we found 28 genes including cys sox, sor, sqr, tst related to sulfur metabolism and 17 metal resistance genes. Interestingly, a pair of quorum sensing system which probably regulating biofilm formation located in chromosome was found. These genes are critical for self-adaptation against severe environment as well as host survival. This study provides a basis understanding for the adaptive strategies of deep-sea hydrothermal bacteria and symbiotic relationship with its host in extreme environments through gene level.


Assuntos
Fontes Hidrotermais , Rhodobacteraceae , RNA Ribossômico 16S , Fontes Hidrotermais/microbiologia , Filogenia , Rhodobacteraceae/genética , Enxofre/metabolismo , Oxirredução
16.
Microbiome ; 11(1): 106, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37189129

RESUMO

BACKGROUND: Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. RESULTS: Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. CONCLUSION: Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition. Video Abstract.


Assuntos
Fontes Hidrotermais , Animais , Fontes Hidrotermais/microbiologia , Caramujos/microbiologia , Geografia , Simbiose/genética , Filogenia
17.
Environ Microbiol Rep ; 15(6): 698-707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37218095

RESUMO

The Wood-Ljungdahl pathway (WLP) is a key metabolic component of acetogenic bacteria where it acts as an electron sink. In Archaea, despite traditionally being linked to methanogenesis, the pathway has been found in several Thermoproteota and Asgardarchaeota lineages. In Bathyarchaeia and Lokiarchaeia, its presence has been linked to a homoacetogenic metabolism. Genomic evidence from marine hydrothermal genomes suggests that lineages of Korarchaeia could also encode the WLP. In this study, we reconstructed 50 Korarchaeia genomes from marine hydrothermal vents along the Arctic Mid-Ocean Ridge, substantially expanding the Korarchaeia class with several taxonomically novel genomes. We identified a complete WLP in several deep-branching lineages, showing that the presence of the WLP is conserved at the root of the Korarchaeia. No methyl-CoM reductases were encoded by genomes with the WLP, indicating that the WLP is not linked to methanogenesis. By assessing the distribution of hydrogenases and membrane complexes for energy conservation, we show that the WLP is likely used as an electron sink in a fermentative homoacetogenic metabolism. Our study confirms previous hypotheses that the WLP has evolved independently from the methanogenic metabolism in Archaea, perhaps due to its propensity to be combined with heterotrophic fermentative metabolisms.


Assuntos
Euryarchaeota , Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , Madeira/metabolismo , Bactérias/genética , Archaea/genética , Archaea/metabolismo , Euryarchaeota/genética , Filogenia
18.
Artigo em Inglês | MEDLINE | ID: mdl-36951905

RESUMO

A novel moderately thermophilic heterotrophic bacterium, designated strain 143-21T, was isolated from a deep-sea hydrothermal chimney sample collected from the Central Indian Ridge at a depth of 2 440 m. Phylogenetic analysis indicated that strain 143-21T belongs to the genus Crassaminicella. It was most closely related to Crassaminicella thermophila SY095T (96.79 % 16S rRNA gene sequence similarity) and Crassaminicella profunda Ra1766HT (96.52 %). Genomic analysis showed that strain 143-21T shares 79.79-84.45 % average nucleotide identity and 23.50-29.20 % digital DNA-DNA hybridization with the species of the genus Crassaminicella, respectively. Cells were rod-shaped, non-motile, Gram-positive-staining. Terminal endospores were observed in stationary-phase cells when strain 143-21T was grown on Thermococcales rich medium. Strain 143-21T was able to grow at 30-60 °C (optimum, 50 °C), pH 6.5-8.5 (optimum, pH 7.0) and in 1.0-7.0 % NaCl (w/v; optimum 2.0 %, w/v). Strain 143-21T utilized fructose, glucose, maltose, mannose, ribose, N-acetyl-d-(+)-glucosamine and casamino acids, as well as amino acids including glutamate, lysine, histidine and cysteine. The main fermentation products from glucose were acetate (2.07 mM), H2 and CO2. It did not reduce elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and Fe (III). The predominant cellular fatty acids were C14 : 0 (48.8 %), C16 : 0 (12.9 %), and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 10.2 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol, as well as two unidentified phospholipids and four unidentified aminolipids. No respiratory quinones were detected. Based on its phylogenetic analysis and physiological characteristics, strain 143-21T is considered to represent a novel species of the genus Crassaminicella, for which the name Crassaminicella indica sp. nov. is proposed. The type strain is strain 143-21T (=DSM 114408T= MCCC 1K06400T).


Assuntos
Ácidos Graxos , Fontes Hidrotermais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Fontes Hidrotermais/microbiologia , Anaerobiose , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fosfolipídeos/química , Bactérias Anaeróbias
19.
Chemosphere ; 324: 138258, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898438

RESUMO

Deep-sea hydrothermal vent communities, revealing patterns of niche partitioning, live in a limited area characterised by sharp physico-chemical gradients. In this study, we investigated carbon, sulfur, nitrogen stable isotopes as well as arsenic (As) speciations and concentrations for two snails (Alviniconcha sp. and Ifremeria nautilei) and a crustacean, (Eochionelasmus ohtai manusensis), occupying distinct niches in the hydrothermal vent field of the Vienna Woods, Manus Basin, Western Pacific. δ13C values of Alviniconcha sp. (foot), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) are similar, from -28 to -33‰ (V-PDB). The δ15N values of Alviniconcha sp. (foot and chitin), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) range from 8.4 to 10.6‰. The δ34S values of Alviniconcha sp. (foot and chitin), I. nautilei (foot) and E. o. manusensis (soft tissue) range from 5.9 to 11.1‰. Using stable isotopes, for the first time, we inferred a Calvin-Benson (RuBisCo) metabolic pathway for Alviniconcha sp. along with the presence of γ-Proteobacteria symbionts for the Vienna Woods communities. For I. nautilei, a feeding pattern is proposed with γ-Proteobacteria symbiosis and a Calvin-Benson-Bassham diet with mixotrophic feeding. E. ohtai manusensis is filtering bacteria with a CBB feeding strategy, with δ15N values indicating possible higher position in the trophic chain. Arsenic concentrations in the dry tissue of Alviniconcha (foot), I. nautilei (foot) and E. o. manusensis (soft tissue) are high, from 4134 to 8478 µg/g, with inorganic As concentrations of 607, 492 and 104 µg/g, respectively and dimethyl arsenic (DMA) concentrations of 11.12, 0.25 and 11.2 µg/g, respectively. Snails occurring in a vent proximal position have higher As concentration than barnacles, a pattern not observed for S concentrations. Arsenosugars were not put in evidence indicating that the available organic material for the vent organisms are not surface derived.


Assuntos
Arsênio , Fontes Hidrotermais , Thoracica , Animais , Fontes Hidrotermais/microbiologia , Papua Nova Guiné , Caramujos , Isótopos
20.
Appl Environ Microbiol ; 89(3): e0001823, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847505

RESUMO

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, hydrothermal activity, and organic matter accumulation on the seafloor due to high sedimentation rates. In the hydrothermal sediments of Guaymas Basin, microbial community compositions and coexistence patterns change across steep gradients of temperature, potential carbon sources, and electron acceptors. Nonmetric multidimensional scaling and guanine-cytosine percentage analyses reveal that the bacterial and archaeal communities adjust compositionally to their local temperature regime. Functional inference using PICRUSt shows that microbial communities consistently maintain their predicted biogeochemical functions in different sediments. Phylogenetic profiling shows that microbial communities retain distinct sulfate-reducing, methane-oxidizing, or heterotrophic lineages within specific temperature windows. The preservation of similar biogeochemical functions across microbial lineages with different temperature adaptations stabilizes the hydrothermal microbial community in a highly dynamic environment. IMPORTANCE Hydrothermal vent sites have been widely studied to investigate novel bacteria and archaea that are adapted to these extreme environments. However, community-level analyses of hydrothermal microbial ecosystems look beyond the presence and activity of particular types of microbes and examine to what extent the entire community of bacteria and archaea is adapted to hydrothermal conditions; these include elevated temperatures, hydrothermally generated carbon sources, and inorganic electron donors and acceptors that are characteristic for hydrothermal environments. In our case study of bacterial and archaeal communities in hydrothermal sediments of Guaymas Basin, we found that sequence-inferred microbial function was maintained in differently structured bacterial and archaeal communities across different samples and thermal regimes. The resulting preservation of biogeochemical functions across thermal gradients is an important factor in explaining the consistency of the microbial core community in the dynamic sedimentary environment of Guaymas Basin.


Assuntos
Fontes Hidrotermais , Microbiota , Filogenia , Sedimentos Geológicos/microbiologia , Archaea/genética , Bactérias/genética , Carbono , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...